
Some SwiftUI fundamentals
[PDF version unfortunately with some spacing and page splitting problems]

Guy Lapalme, Université de Montréal, October 2023

This document was originally written to help me remember what I consider to be the SwiftUI fundamentals.
Finally, it became the tutorial that I would have like to read before working with SwiftUI. I hope it is as useful to
others as it has been for me writing it.

Many documents on the web, notably Apple Tutorials, usually demonstrate SwiftUI features by means of
examples without never taking time to explain the underlying ideas. If it can be relatively easy, but not always,
to build spectacular demos by following the steps of a tutorial, it is not so straightforward to apply these ideas
later in one's own application. There are also many commercial or ad-full web sites and videos that explain
some ideas, but there are usually limited to a few minutes, even seconds, reading focused on aspects of the

language and system 1 .

A notable exception to this superficial approach was the first edition of Thinking in Swift, which aimed to
explain the rationale behind SwiftUI, but even there I found it a bit hard to follow. So I was looking forward for
their second edition. Unfortunately, this new edition is even less explicit on the fundamentals than their first
one. The authors go to great length to illustrate some aspects, but they skip interesting explanations about the
flow of information in SwiftUI that appeared in the first edition. They seem to take for granted that the reader is
a seasoned Swift programmer at ease with more advanced features of the language or that they have followed
their on-line courses. The main advantage of the second edition is that it explains important changes in the
state management that appeared in IOS 17.

Swift is a script-like language combining great insights from years of programming language design. I see it as a
Python-like script language with static strong typing à la Haskell. Its designers have also introduced some

uncommon features, such as result builders or property wrappers that are heavily used in SwiftUI 2 . This is why I
will spend some time explaining these in this document.

I take it for granted that the reader has already some basic notions of the Swift language and some experience
working with Xcode. Link to the Xcode project of the examples in this document. At the beginning of some
sections of this document, links to the complete source code for that section are also given.

1. Main principle: linking states and views
Interactive applications must ensure that the display always reflects the states, sources of truth in the Apple of
terminology, that define the system. When the user or an external event modifies states, the display must be
updated to reflect these changes. Many frameworks have been developed over the years to help build systems
for synchronizing the states and display. The most well known being the Model-View-Controller approach in
which the controller updates the view when notified of model changes, usually by means of callback functions.

Recently, a new paradigm has appeared which bypasses the controller, so that the system is defined in terms of
a view which is updated automatically when the model changes. One well-known example being React. See this
article, for a comparison between SwiftUI and React.

mailto:lapalme@iro.umontreal.ca
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/tutorials/swiftui
https://www.hackingwithswift.com/sixty
https://www.objc.io/books/thinking-in-swiftui/
https://www.swift.org/
https://react.dev/
https://blog.maximeheckel.com/posts/swiftui-as-react-developer/

According to this Apple introductory document, you create a lightweight description of your user interface by
declaring views in a hierarchy that mirrors the desired layout of your interface. SwiftUI then manages drawing and
updating these views in response to events like user input or state changes.

According to Bart Jacobs, SwiftUI provides developers with an API to declare or describe what the user interface
should look like. SwiftUI inspects the declaration or description of the user interface and converts it to your
application's user interface. A view is no longer the result of a sequence of events. A view is a function of state. In other
words, the user interface is a derivative of the application's state. If the application's state changes, the user interface
automatically updates, eliminating a whole category of bugs.

To explain how to achieve these laudable goals, I will start by explaining how to build a view from a hierarchy of
other views. When developing in SwiftUI with Xcode, views are defined by Swift code which can be executed on
the fly in a preview window, so that it is easy to see how it is laid out. Xcode allows building a SwiftUI view by
drag-and-drop of code snippets and patterns, but finally it seems simpler to me to type the code directly. Once
the views can be defined, I will describe how to synchronize them with system states.

2. View
View is a predefined Swift type, a protocol, the equivalent to an interface in Java. Remember that SwiftUI View
instances, being struct , are immutable, so they must be recreated when some of its content changes. SwiftUI
provides a whole gamut of predefined views that can be combined to form new custom views.

2.1. Predefined views

Controls: basic interface elements such as Text , Button or Label , but also more sophisticated such as
DatePicker , List , Table or TextEditor

Layout : organizers such as HStack , VStack , ZStack or Spacer

Other : such as Circle , Divider , Group or Image

View modifiers: return a modified version of the view by means of the dot notation for different purposes,
for example

changing its look: .font() , .padding() , .border()

changing its behavior: .onChange{} , .onAppear{} , .onTapGesture{}

2.2. Custom views

A new view is defined with a struct declaration that must conform to the View protocol which means that
there must be a body property of the type some View of the following form.

2.3. Show two dice

struct aCustomView: View {

 var body: some View {

 .. content of the view ..

 }

}

1

2

3

4

5

https://developer.apple.com/documentation/swiftui/declaring-a-custom-view
https://cocoacasts.com/swiftui-fundamentals-what-is-swiftui

2.3. Show two dice

[source code]

We begin with an application that displays views without any interaction. The left part of following figure is an
example of custom view (ImageNameView) that is used twice within the scaffolding code provided by Xcode
with the corresponding preview. It illustrates the following interesting features:

line 11: definition of a custom view with the following components:

image : mandatory string parameter, because of let , corresponding to the name of a system image
(found in the Xcode Symbols library)

name : optional string parameter, because of var with initialization, the text to display

body : defining how the View is composed of other views: here the Image view is stacked vertically
on top of a Text . These views are slightly modified, the Image is made larger and the Text set in
bold. The whole stack in then added some space (padding) around it and a red border is applied.

line 24: ContentView (this name is conventional, but it should match the one used in
ContentView_Previews and in the body of the app when run on a device) whose body defines the view
that will be displayed when run on the device. In this case, this is a Horizontal Stack of two calls to the
custom view I have previously defined each with a different parameter. This stack is then itself stacked
vertically with a text below with some padding and a blue border.

line 37: ContentView_Previews : (provided by the Xcode scaffolding) defines what will be displayed in the
simulated device on the right. In this case, it is merely the ContentView . This allows following the how the
global view develops like while coding it. This is especially useful when learning how to layout views in
SwiftUI.

The syntax used for defining the value of the body of a View is defined by a specialized result builder which is a
predefined property wrapper. These concepts are interesting in themselves, so I spend some time explaining
them independently of SwiftUI. Views also use trailing closures, a notation which might be unfamiliar to
programmers in other languages than Swift. I will first present this notation used throughout Swift programs.

3. Trailing closure
Swift uses closure to designate an anonymous function, often called lambda in other programming languages. A
closure is a list of expressions and instructions within curly brackets. When parameters are specified, they are
indicated at the beginning followed by the keyword in such as in the following example for computing the
sum of squares of two integers and returning an integer. A closure containing a single expression does not
need a return keyword in front.

In most contexts, type annotation of parameters and result can be inferred by the Swift compiler, such as in the
following expression returning 25

A closure is most often used as a functional parameter for functions like map that transforms all elements of an
array to create a new one in with elements of the original list modified by the function. For example, the next
expression creates a list of corresponding squares of two lists of integers. It uses zip to build a list of pairs
from corresponding elements of two lists.

As the closure is the last (and only) functional parameter of map , the call can also be written as:

Here I use several lines to show how it would appear if the content of the function would be more elaborated.
The fact that it appears without the enclosing parentheses is called a trailing closure.

There are also some other goodies for simplifying closures (not only trailing ones) especially in the case of single
expressions. Parameters can be referenced implicitly by position with a dollar sign. The above expression could
thus be written as:

 And even better (or worse !), a closure of the form {$0 op $1} , where op is a binary operator, can be

{ (a:Int, b:Int)->Int in a*a + b*b }1

{a,b in a*a + b*b}(3,4) // => 251

zip([1,2,3],[4,5,6]).map({a,b in a*a + b*b}) // => [17,29,45] 1

zip([1,2,3],[4,5,6]).map {

 a,b in a*a + b*b

} // => [17,29,45]

1

2

3

zip([1,2,3],[4,5,6]).map {$0*$0 + $1*$1} // => [17,29,45] 1

 And even better (or worse !), a closure of the form {$0 op $1} , where op is a binary operator, can be
simplified as op , but then it must be used as a parameter not a trailing closure. For example,

4. Property wrapper
[source code]

A property wrapper is a notation that encapsulates read and write access to a value and adds additional
behavior to it. A Swift property is the name for accessing a value in an object, in SwiftUI most often a struct . A
property can be either stored (as in most programming languages) or computed which means that the value is
recomputed at each time its value is needed with a getter function or changed with a setter function.

I start with a very simple example of a struct for a die whose values must be between 1 and 6. Internally, an
instance of Die uses a value between 0 and 5 but this fact is hidden from the user. The concrete value used for
computation is the private integer number and the private function limit converts the value to the acceptable
range. Die wraps an integer to limit its values between 1 and 6 by taking the value minus one modulo 6 and
projects its current value as a string. The value is accessed and modified by the get and set function of the
computed property wrappedValue . The projectedValue has only a get .

This seemingly convoluted terminology for such a simple application will prove to be useful later. Note that any
action could be added to the setter code here, such as accessing a database, validating a data or refreshing a
view!

zip([1,2,3],[4,5,6]).map(+) // => [5,7,9]

(1...5).reduce(1,*) // => 125 i.e. 5! "reduce" is often called "foldRight"

1

2

struct Die {

 private var number:Int!// implictely unwrapped optional to allow limit call in

init()

 init(wrappedValue:Int){

 number = limit(wrappedValue)

 }

 var wrappedValue: Int {

 get { number+1 }

 set { number = limit(newValue) }

 }

 var projectedValue:String {

 get {["one","two","three","four","five","six"][number]}

 }

 private func limit(_ val:Int) -> Int {

 return max(0,(val-1)%6)

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Given this definition, the creation of an instance of this struct would be
 var d = Die(wrappedValue:10)

Accessing the constrained values would be d.wrappedValue , in this case 4, or d.projectedValue , in this case
"four" .

This seems a bit cumbersome, but once this struct is prefixed with @propertyWrapper , the Swift compiler
greatly simplifies the access and manipulation because the wrapped integer can now be used like any other
integer. So the structure definition would be

The declaration and initialization of an integer of this type become
 @Die var d = 10

The ampersand before a property wrapper creates an attribute in the Swift terminology, in a way like
annotations in other programming languages. Now d , whose value is 4, can be used like any integer in an
expression such as d*3+d , the range constraint being applied transparently . The projected value is obtained
with $d which returns "four" .

So that the compiler knows which variable are wrapped and projected, the variable names wrappedValue and
projectedValue must be used in the definition of the struct . As an added bonus, _v gives access to the
struct instance itself, although this is seldom needed.

5. Result builder
[source code]

A result builder is a user-defined type attribute that adds syntax for creating nested data, like a list or tree, in a
natural, declarative way. The code that uses the result builder can include ordinary Swift syntax, like if and
for , to handle conditional or repeated pieces of data. This notation allows the creation of Domain Specific
Languages (DSL), see some spectacular examples. It explains how the body of a SwiftUI view can be considered
as a single expression without spurious parentheses, brackets and commas.

I now give an example of a result builder, independently of SwiftUI. It is a command-line application featuring a
Blocks world with the following behavior:

A Block is created from a text (a String) with, optionally, a border (a String with a single character), a
width, and a height. If the text contains newlines, all lines are centered in the block as for a SwiftUI Button .
If a border is specified, it is added around the block and if height or width are specified, they are used
for centering the text vertically or horizontally.

A Block can be printed using the method print(). Here is a first interaction.

 }

}

19

20

@propertyWrapper struct Die {.. same as above ..}1

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/advancedoperators/#Result-Builders
https://github.com/carson-katri/awesome-result-builders

which outputs

A Block or list of Block s can be added to the left, to the right, to the top and to the bottom of another
one to create a new Block . It also possible to create copies of a block either horizontally or vertically.
Blocks of different height or width are centered relative to one another. A border can be added to the final
result.

Here is an example of chained calls with the result,

which outputs

Using the result builder explained later this intricate chain of embedded calls can be simplified with the
following call that is more intuitive and reminiscent of a SwiftUI view.

Block("We\nlove\nSwiftUI",".").print()1

.........

. We .

. love .

.SwiftUI.

.........

1

2

3

4

5

Block("We\nlove\nSwiftUI")

 .add(right:Block("|").repeating(vertical: 4))

 .add(right:[Block("truly"),Block("so"," ")])

 .add(bottom:Block("very much","~",width:10))

 .border("+").print()

1

2

3

4

5

+++++++++++++++++++

+ We | +

+ love |truly so +

+SwiftUI| +

+ | +

+ ~~~~~~~~~~~~ +

+ ~very much ~ +

+ ~~~~~~~~~~~~ +

+++++++++++++++++++

1

2

3

4

5

6

7

8

9

A resultBuilder is a predefined property wrapper for building at compile time elaborated data structures or
lists of calls. It can be considered as a kind of structured macro system that separates the various components
and combines them into calls to the appropriate data structure.

The first thing to define is a resultBuilder structure to deal with a list of statements, conditionals and loops.
In our case, all functions of the result builder create a list of Block s of various forms: variadic parameters in
the first case and list of list of blocks in the second and last cases. buildEither calls deal with conditional
statements and buildExpression is applied automatically by the resultBuilder interpreter when a single
Block is encountered. Definitions for buildEither (lines 13-18) and buildArray (lines 19-21) are optional,
but when they are not defined then no conditional statement, nor loop can be used in the calls.

The resulting property wrapper BlocksBuilder can then be used to define the following two functions to

Vert("+") {

 Horiz {

 Block("We\nlove\nSwiftUI")

 Vert {for _ in 0..<4 {Block("|")}}

 Block("truly")

 Block("so"," ")

 }

 Block("very much","~",width:10)

}.print()

1

2

3

4

5

6

7

8

9

@resultBuilder struct BlocksBuilder {

 static func buildBlock(_ components: Block...) -> [Block] {

 components

 }

 // deal also with variadic parameter of list of blocks

 static func buildBlock(_ components: [Block]...) -> [Block] {

 Array(components.joined())

 }

 // transform a single block into a list of blocks

 static func buildExpression(_ expression: Block) -> [Block] {

 [expression]

 }

 static func buildEither(first component: [Block]) -> [Block] {

 component

 }

 static func buildEither(second component: [Block]) -> [Block] {

 component

 }

 static func buildArray(_ components: [[Block]]) -> [Block] {

 Array(components.joined())

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The resulting property wrapper BlocksBuilder can then be used to define the following two functions to
create an appropriate list of calls to Block s. The last parameter is a Swift trailing closure that is called to create
the list of blocks that are stacked either to the right for Horiz or to the bottom for Vert . The first parameter is
the optional border that is applied.

With these can now write functions to print blocks of numbers, here in a pyramid such as this

to create a Pascal's triangle

 or to print a checkerboard

func Horiz(_ border:String="",@BlocksBuilder content:() -> [Block])->Block {

 let blocks = content()

 return blocks[0].add(right:Array(blocks[1...])).border(border)

}

func Vert(_ border:String="",@BlocksBuilder content:() -> [Block]) -> Block {

 let blocks = content()

 return blocks[0].add(bottom:Array(blocks[1...])).border(border)

}

1

2

3

4

5

6

7

8

9

Vert{

 for n in 0...5 {

 Horiz {

 for k in 0...n {

 Block(String(C(n,k)),width:4)

 }

 }

 }

}.print()

1

2

3

4

5

6

7

8

9

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

1

2

3

4

5

6

https://en.wikipedia.org/wiki/Pascal%27s_triangle

whose output starts with

6. Back to SwiftUI
The resultBuilder for creating views in SwiftUI is (appropriately) called ViewBuilder which is seldom called
directly. It was defined by SwiftUI designers for declaring functions that create the views to perform layout e.g.
VStack , HStack , List , etc. The trailing closure explains the peculiar syntax which also relies on the fact that
a function definition containing a single expression does not need to add the return keyword.

Equipped with this specialized result builder, static views can be built, but the key point is how to link this view
with an application model. SwiftUI uses again property wrappers which proved to be well adapted for
transparently linking view updates with object modifications. Swift being statically typed, SwiftUI designers
managed to use types to limit the number of views that need to be recreated when certain variables and
objects are changed.

7. State management system
In SwiftUI, a view is bound to some data (or state) as a source of truth, and automatically updates whenever the
state changes. Every view has a state, which can be changed during execution and each time the state is
changed, the view is recreated, remember that a view is immutable.

As shown above, annotating a variable as a propertyWrapper allows executing code at each access and or

let black = Block("*","*") // create a 3x3 block of 9 "*"

let white = Block(" "," ") // create a 3x3 block of 9 " "

Vert("+"){

 for i in 1..<8 {

 Horiz {

 if i%2 == 0 {

 for _ in 1...4 {black ; white}

 } else {

 for _ in 1...4 {white ; black}

 }

 }

 }

}.print()

1

2

3

4

5

6

7

8

9

10

11

12

13

++++++++++++++++++++++++++

+ *** *** *** ***+

+ *** *** *** ***+

+ *** *** *** ***+

+*** *** *** *** +

+*** *** *** *** +

+*** *** *** *** +

+ *** *** *** ***+

+ *** *** *** ***+

1

2

3

4

5

6

7

8

9

As shown above, annotating a variable as a propertyWrapper allows executing code at each access and or
modification. SwiftUI uses this feature to ensure that when a state variable is modified, the view is recreated
accordingly to reflect the new value. The code that Swift executes on getter and setter of the state property
wrapper is hidden from the user.

SwiftUI provides 17 property wrappers, but I present only the five ones that I consider to be fundamental:
@State , @Binding , @StateObject , @ObservedObject , @Environment .

I first describe the first two attributes that are used for local modifications of simple values and use them in a
small application. The other three will be used in the next application.

@State is a source of truth for the view and is used when the scope of changes is limited to the current
view. The framework allocates a persistent storage for this value type and makes it a dependency, so
changes to the state will automatically be reflected in the view. Usually a @State annotates a private
variable, because it is used by the view internally.

@Binding can read and write a value owned by a source of truth, for example, a @State . An interesting
feature is the fact that the projected value of a State is a binding than can be passed in a view hierarchy
and change it. The changes will be reflected on any view which uses it as a source of truth.

In iOS 17 and macOS 14, the state management API of SwiftUI has changed while still staying compatible with
previous versions. As the basic principles stay the same (specifically @State and @Binding), we will first
describe the previous API and explain later how the same application can be somewhat simplified with the new
API.

8. Roll two dice
[source code]

The following example, a variation on our first example, shows typical use cases for these two property
wrappers. It displays two dice that can be rolled by tapping (or clicking) on their view. The global view displays
the total of the two dice as shown in the next figure. The left part shows the initial display and the right part a
typical display once the user has tapped (or clicked) at least once on each die.

A DieView defines number as a @State corresponding to the number of dots on the last draw. Conceptually,
this could be a simple integer value, but as Swift views are immutable, number must be annotated as a
@State which performs the appropriate delegation and linking with the view so that when number is changed,
the view is recreated appropriately. number is initially set to 0 and modified in the code associated with the
view modifier .onTapGesture in which it is set to a random integer between 1 and 6. Updating the total is

done by subtracting the current value to get the value of the other die before adding the new value. The Image

https://www.hackingwithswift.com/quick-start/swiftui/all-swiftui-property-wrappers-explained-and-compared

done by subtracting the current value to get the value of the other die before adding the new value. The Image
and the Text displayed in the view depend on the value of number, so each time a new number is
regenerated, the Image and the Text are recreated,

The ContentView stacks two DieView s side by side over a text that displays the total of the two dice when it
is not 0. total is a local @State to the ContentView , but it needs to be passed to the two DieView s to be
updated. For this, the Binding associated with the State must be retrieved and sent to each DieView . As
the projectedValue of a State is a Binding (how convenient!), the binding $total is given to each call to
DieView and any modification done to total in a DieView will be reflected in the ContentView to recreate its
Text with the new value.

So conceptually a variable with attribute @State is used for storing a local value that is watched by the system

struct DieView:View {

 @State private var number:Int = 0

 @Binding var total:Int

 var body: some View {

 VStack {

 Image(systemName: number==0 ? "squareshape"

 : ("die.face."+String(number)))

 .imageScale(.large)

 Text(["—","one","two","three","four","five","six"][number])

 .fontWeight(.bold)

 }.padding()

 .border(.red)

 .onTapGesture {

 let other = total - number

 number = Int.random(in:1...6)

 total = other + number

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

struct ContentView: View {

 @State private var total:Int = 0

 var body: some View {

 return VStack {

 HStack{

 DieView(total: $total)

 DieView(total: $total)

 }

 Text(total == 0 ? "Tap a die" : "Total: \(total)")

 }.padding().border(.blue)

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

So conceptually a variable with attribute @State is used for storing a local value that is watched by the system
to ensure that the display is updated when it is modified. A variable with attribute @Binding has similar
properties but it is linked to a @State variable in another context. The Swift implementation ensure that the
new view (re)creation process is transparent to the user and efficient. This how the controller of the Model-
View-Controller is bypassed, thus simplifying the flow of information, because when the state is changed, the
view is automatically changed to reflect the new state.

9. Solitaire Yahtzee
[source code]

To show use cases of other property wrappers available in SwiftUI, I now present an application for playing a
solitaire version of the game of Yahtzee. The objective of the game is to score points by rolling five dice to
make certain combinations. The dice are rolled three times in a turn to try to make various scoring
combinations. On the second or third turn, the player can fix some dice and roll only the others. After the third
roll, the player chooses a scoring category to add to the total score. Once a category has been selected in the
game, it cannot be used again. The scoring categories have varying point values, some of which are fixed values
and others for which the score depends on the value of the dice. The goal is to score the most points over the
13 turns.

9.1. Description of the Yahtzee interface

As shown in this figure showing the first turn, the top part is a display of five dice, followed by buttons Roll
and C . Below are shown two sections of possible dice combinations, called categories, with subtotal scores.
When tapped, the Roll button assign new values to the dice.

The second part on the left of the figure shows the situation once the user has rolled the dice three times. As
the three dice in the middle have been fixed by clicking on them, thus changing their color, only the values of
the first and last dice have changed. The system displays all possible scores: a Small straight (a list of 4
consecutive values here 1,2,3 and 4) worth 30 points or 2 Threes worth 6 points, an Ace, a Two or Chance which
is the sum of all dice values.

In the third part of the figure, the user has chosen the Small straight by tapping on it and its total is added to

https://en.wikipedia.org/wiki/Yahtzee

In the third part of the figure, the user has chosen the Small straight by tapping on it and its total is added to
Lower section total and Grand total. Once a category has been selected, it cannot be selected again. The game
continues until all 13 categories have been selected. If at a turn no paying category occurs, one must be chosen
anyway which results in a 0 score for this turn.

The last part of the figure shows what happens when the user clicks on the C button for changing the color of
the selection. This change of color would also affect fixed dice.

I do not claim that this user interface is the best one or the most intuitive for this game, but it illustrates the use
of SwitfUI complex object attributes in a restricted setting. It involves class instances, and not only structs ,
with methods and properties, these instances being shared between many views.

I first define the roles of three attributes, although the nuances might seem a bit cryptic at this point, I hope
that they will become clearer once they are seen in action.

@ObservedObject This property wrapper annotates a complex object in which it is the user that is
responsible for indicating that a part of the object has been changed by calling the objectWillChange
method required by the ObservableObject protocol. This seems complex, but thanks to the property
wrapper @Published (yet another attribute!), this method is called automatically when the annotated
part of the object is changed.

@StateObject is a special kind of @ObservedObject that should be used within the view in which the
object is created to indicate to SwiftUI it is the owner of this object. Other views that reference this object
should use @ObservedObject .

@EnvironmentObject This property wrapper also doesn’t create or allocate the object itself. Instead, it
provides a mechanism to share values across a hierarchy of views.

9.2. Organization of the application

The main view (ContentView in the usual SwiftUI terminology) is organized as follows from top to bottom

View with five dice and two buttons

Upper section with 6 categories

Total and bonus of upper section

Lower section with 7 categories

Lower section total and grand total

This is coded as follows in the body of the main ContentView . The other Views will be explained later.

var body: some View {

 VStack {

 HStack (spacing:3){ // top view with dice and buttons

 DiceView(dice: dice)

 Button (move,action:roll_dice)

 .frame(width: 90)

 .buttonStyle(.bordered)

1

2

3

4

5

6

7

The internal states (sources of truth) for this application are kept in instances of two classes:

Dice whose properties are

an array of 5 Int s with the current value of each die

an array of 5 Bool s indicating whether the die at the same index is fixed or not

function roll which sets a random number between 1 and 6 to all dice that are not fixed

function clear_fixed which indicates that no die is currently fixed

[source code]

Section whose properties are

an array of String for keeping the names of the categories of this section

an array of Int (having the same length as the names) for the current value of the score associated
with a name; this value is initially -1 to show that no score has yet been computed

an array of Bool (same length as the names) indicated if this category has been selected

function set_scores for setting the values of the scores

 .buttonStyle(.bordered)

 .fixedSize()

 Button ("C", action: selectColor.nextColor)

 }

 SectionView(section: upper_section,action: update_totals)

 CategoryView(kind: "Upper section total",score: $upper_total)

 CategoryView(kind: "Upper section bonus",score: $upper_bonus)

 SectionView(section: lower_section,action: update_totals)

 CategoryView(kind: "Lower section total", score: $lower_total)

 CategoryView(kind: "Grand total", score: $grand_total)

 if upper_section.all_selected() && lower_section.all_selected(){

 // must call .init() so that Markdown string interpolation works

 Button (.init("*Game over: \(grand_total) points*\nClick to restart"),

 action:restart)

 .font(.title)

 .buttonStyle(.bordered)

 }

 }.environmentObject(selectColor)

}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

class Dice:ObservableObject {

 @Published var dice = [Int](repeating: 0, count: 5)

 @Published var fixed = [Bool](repeating:false, count:5)

 func roll(){...}

 func clear_fixed(){...}

}

1

2

3

4

5

6

7

function set_scores for setting the values of the scores

function clear_unselected for indicating that unselected scores should be reset to -1

function all_selected for indicating that all its scores have been selected

function total for computing the total of selected categories

[source code]

As properties of instances of these classes will be shared among many views, they cannot be annotated as
@State with the corresponding @Binding which can only be used for simple values. So these classes inherit
from the ObservableObject protocol. This implies that the programmer must ensure that the
objectWillChange method is called on any modification of the object. But thanks to the @Published
attribute, this happens automatically when references are made to this object. So the Dice class publishes its
dice and fixed properties while the Section class publishes its scores and selected properties that
need to be used externally. Note the names of the section are not needed outside the Section , so this list is
not marked as an attribute, but as an ordinary local variable to the class instance.

Instances of these classes will be used in specialized views. Here is the DiceView which itself uses a view for a
single die. [source code]

class Section:ObservableObject {

 var names:[String]

 @Published var scores:[Int] = []

 @Published var selected:[Bool] = []

 init(_ names:String){...}

 func init_scores(){...}

 func set_scores(values:[Int]){...}

 func clear_unselected(){...}

 func all_selected()->Bool {...}

 func total() -> Int {...}

}

1

2

3

4

5

6

7

8

9

10

11

struct DieView:View {

 @Binding var value:Int

 @Binding var fixed:Bool

 @EnvironmentObject var selectColor:SelectColor

 var body: some View {

 Image(systemName:value==0 ? "squareshape":("die.face."+String(value)))

 .resizable()

 .aspectRatio(contentMode: .fit)

 .frame(width: 50, height: 50)

 .background(fixed ? selectColor.color : .clear)

 .onTapGesture {fixed.toggle()}

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The DiceView gets a Dice object as a parameter and creates a list of DieView s. As the Dice instance is an
ObservableObject , it must be marked with the attribute @ObservedObject . In DieView , value and fixed
define the state of a die, but it must be used outside, so they are annotated with @Binding . In DiceView , all
DieView s are created by passing the binding for each Die thus the dollar sign in front. The property
selectColor will be dealt with later.

Viewing a section composed of categories is as follows [source code]

struct DiceView:View {

 @ObservedObject var dice:Dice

 var body: some View {

 ForEach (dice.dice.indices,id: \.self) {i in

 DieView(value: $dice.dice[i],fixed: $dice.fixed[i])

 }

 }

}

15

16

17

18

19

20

21

22

23

struct CategoryView:View {

 var kind:String

 @Binding var score:Int

 var body: some View {

 HStack{

 Text(kind)

 Spacer()

 Text(score<0 ? "—" : String(score))

 }

 .padding(.horizontal)

 .font(.title2)

 }

}

struct SectionView:View {

 @ObservedObject var section:Section

 let action:()->Void // callback on parent...

 @EnvironmentObject var selectColor:SelectColor

 var body: some View {

 VStack{

 ForEach(section.names.indices,id: \.self) {

 i in CategoryView(kind:section.names[i], score: $section.scores[i])

 .background(section.selected[i] ? selectColor.color : .clear)

 .TapGesture {

 if !section.selected[i]{

 section.selected[i] = true

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A CategoryView displays its kind (a String) with the corresponding score (a dash if is negative). Its value is
not modified inside this view, but it can be modified by the parent view (see function update_totals , lines 36-
46 of next listing), so it is annotated as @Binding . SectionView gets a Section instance, an
ObservableObject , as a parameter so its declaration must be annotated with @ObservedObject . Once the
selection has been done, the scores must be updated in the main view by the caller. These actions are

wrapped in a closure parameter 3 . The body of the SectionView creates a CategoryView for each name of
its section. When it is tapped, the category is marked as selected and its background color is changed.

With these views, the application is built as follows [source code] [source code of yahtzeeScores].

 action()

 }

 }

 }

 }.padding(.vertical).border(.black)

 }

}

28

29

30

31

32

33

34

35

struct ContentView: View {

 @State private var move:String = "Roll"

 @State private var nbRolls:Int = 0

 @StateObject private var dice = Dice()

 @StateObject private var upper_section

 = Section(["Aces", "Twos", "Threes", "Fours", "Fives", "Sixes"])

 @State private var upper_total:Int = 0

 @State private var upper_bonus:Int = 0

 @StateObject private var lower_section

 = Section(["3 of a kind", "4 of kind", "Full house",

 "Small straight", "Large straight", "Yahtzee","Chance"])

 @State private var lower_total = 0

 @State private var grand_total = 0

 @StateObject var selectColor = SelectColor()

 func roll_dice(){

 nbRolls += 1

 if nbRolls <= 3 {

 dice.roll()

 if nbRolls == 3 {

 show_scores()

 move = "Score"

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

The status of the system is kept in the following simple variables (of value type in Swift terminology) annotated
as @State :

move : label for the Button : either "Roll" or "Choose\nscore" (line 2)

nbRolls : tracks the number of rolls (between 0 and 3) (line 3)

upper_total , upper_bonus , lower_total , grand_total : tracks the various scores at this point of the
game (lines 8,9,14,15)

There are three @StateObject s, ignoring selectColor for the moment:

dice : an instance of Dice (line 4)

upper_section , lower_section : instances of Section with different names. (lines 6,11)

The body of the View is vertical stacking of 8 views, the first one being a line with the dice and two buttons. The

 }

 }

 func show_scores(){

 let (upper,lower) = yathzeeScores(dice: dice.dice)

 upper_section.set_scores(values:upper)

 lower_section.set_scores(values:lower)

 }

 func update_totals(){

 upper_section.clear_unselected()

 lower_section.clear_unselected()

 upper_total = upper_section.total()

 upper_bonus = upper_total >= 63 ? 35 : 0

 lower_total = lower_section.total()

 grand_total = upper_total + upper_bonus + lower_total

 dice.clear_fixed()

 move = "Roll"

 nbRolls=0

 }

 func restart(){

 upper_section.init_scores()

 lower_section.init_scores()

 update_totals()

 }

 var body: some View {

 ... see the code at start of section ...

 }

 }

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

action associated with the first button tracks the number of rolls and displays the scores at the third. The
second button, used to change the color of the selection, will be presented later.

Then are added the upper and lower sections followed by two CategoryView s for their partial scores. When all
categories are fixed, then a Text is added at the bottom.

The code for the show_scores and update_totals is straightforward is not discussed here as I want to focus
on the SwiftUI interface aspects.

9.3. Accessing the global environment

The Environment is a mechanism used by SwiftUI to propagate values from a View to its descendants. It is used
implicitly for handling some methods that are available on all view types. When these types of function are
called their effect is to change a value that is available not only in the current view but also in all embedded
views of this one. There are about 50 predefined EnvironmentValues dealing with global objects (e.g. locale ,
timeZone), characteristics of the display (e.g. colorScheme), text styles (e.g. font , lineSpacing), view
attributes (e.g. backgroundStyle).

But it is also possible to define custom environment values to transfer information from one view to another
without passing them as parameters as this can become cumbersome in complex applications.

In my simple application, this is probably an overkill, but I want to give an example of the use of an environment
object. I define a color used for a fixed die or for a selected category (see the last part of the last figure). This
color can be changed by clicking the C button. There are five choices of color that are selected in rotation. The
environment is an instance of an ObservableObject with @Published properties and kept in the
ContentView as a @StateObject . The object tracking the current color is follows [source code]

 For setting the environment, an instance of this class is given as a parameter to the global view modifier
environmentObject (see line 24 of ContentView). When the user taps on the C button, the nextColor
method of this object is called to change the value of the @Published variable color . This new color is used in
the current view for setting the color of the text for the end of game, but also in the DieView and
SectionView which refer to this environment object with the following attribute.

class SelectColor:ObservableObject {

 @Published var color:Color = .yellow

 let colorChoices:[Color] = [.yellow,.teal,.pink,.green,.orange]

 var current = 0

 func nextColor(){

 current = (current+1)%colorChoices.count

 color = colorChoices[current]

 }

}

1

2

3

4

5

6

7

8

9

10

@EnvironmentObject var selectColor:SelectColor1

https://developer.apple.com/documentation/swiftui/environment/
https://developer.apple.com/documentation/swiftui/environmentvalues

In the code of the views, the color itself is referred to selectColor.color . So when the value in the
environment object is changed, this value is propagated to all views in the hierarchy. As for global variables, this
is useful for making changes to the whole application, but it should be used parsimoniously at it implies
recreating many views.

9.4. Changes for iOS 17

[source code] file names are the same as the previous ones, but suffixed by _17

Starting with iOS 17 and macOS 14, SwiftUI provides support for Observation, a Swift-specific implementation
of the observer design pattern implemented by means of macros that modify the abstract syntax tree of the
program. The compiler can then track changes in objects and in the environment. This migration guide
illustrates the changes on a simple example.

In our case, the following changes are made for IOS 17:

Variable declarations annotated by @StateObject/@ObservedObject are annotated by @State

@EnvironmentObject annotations are replaced by @Environment(class_name .self)

The @Binding annotations stay the same

Class inheriting from ObservableObject is now annotated with @Observable

@Published annotations are removed

The function call .environmentObject(...) is replaced by .environment(...)

The logic of the application is not changed, the main advantage is that any state is annotated the same
independently of the fact that it is a single variable or an object. It is the job of the compiler to detect changes in
the object and redraw only the necessary views

10. Conclusion
This document has presented small SwiftUI applications featuring some aspects of SwiftUI. After presenting
how SwiftUI differs from the usual approach to developing interactive applications, some unusual features of
Swift such as trailing closure, property wrapper and result builder, were first described as they are used
extensively to define views in SwiftUI. State management and the associated bindings being at the core of
SwiftUI, they were first illustrated with a single view application. Then more complex state management
attributes were presented and put in action in an application using multiple objects and views.

This document does not deal with many aspects of SwiftUI such as scene management, animation or
navigation lists, but I feel it gives the necessary tools to tackle them, because state management is at the core
of SwiftUI.

References

@EnvironmentObject var selectColor:SelectColor1

https://developer.apple.com/documentation/Observation
https://developer.apple.com/documentation/swiftui/migrating-from-the-observable-object-protocol-to-the-observable-macro

References
Chris Eidhof and Florian Kugler, Thinking in SwiftUI, a Transition Guide, 1st edition, 2nd edition
Very informative, but you should read the first edition (unfortunately not unavailable on the web...) before
tackling the second.

Mateus Rodrigues: Understanding SwiftUI : View ; Modifiers
Very clear and to the point explanation of views and modifiers

Aleksandr Gaidukov: How to Approach Wrappers for Swift Properties
High level and clear explanation of property wrappers

Mike Zaslavskiy, Anthony Williams, Ryan Zhang: How the SwiftUI View Lifecycle and Identity work
Very good explanation of the Swift state management works.

Paul Hudson, What’s the difference between @ObservedObject, @State, and @EnvironmentObject?
Short and to the point introduction to SwiftUI attributes with a good illustration of their differences.

Appendix: Useful tricks

https://www.objc.io/books/thinking-in-swiftui/
https://dev.to/mtsrodrigues/understanding-swiftui-view-331n
https://dev.to/mtsrodrigues/understanding-swiftui-modifiers-3e50
https://www.toptal.com/swift/wrappers-swift-properties
https://doordash.engineering/2022/05/31/how-the-swiftui-view-lifecycle-and-identity-work/
https://www.hackingwithswift.com/quick-start/swiftui/whats-the-difference-between-observedobject-state-and-environmentobject#:~:text=Summing%20up%20the%20differences,be%20using%20%40ObservedObject%20for%20it.

1. My text editor claims that this document is less than a 20-minute read, but it surely does not consider making sense of the computer code... ↩

Appendix: Useful tricks
Here is a list of personal non-obvious techniques that I found useful during my SwiftUI development.

To find all predefined controls, system and images in Xcode:

CMD-Shift-L : show Library or click the + in the upper right of the application window

To see how the various views are organized add .border(.red) to the views

From the first edition of Thinking in Swift (p. 10)

To inspect the underlying type of the body, use the following helper function:

 The function is used like this to print out the view’s type when the body gets executed:

 var body: some View { VStack { */*... */* }.debug()}

within the body of a View it is possible to execute some code with the following pattern

From the second edition of Thinking in Swift (p. 45)

 Insert print in a View body while ignoring the Void return type...

 let _ = print("Executing <MyView> body") // print when the body is re-executed
 let _ = Self._printChanges() // print why the body is re-executed

Simulate a callback function in a View by adding a function parameter such as

that can be called from within the view to execute code in the caller context. The view is then created with
theView(action: the function) or with a trailing closure.

 extension View {

 func debug() -> Self {

 print(Mirror(re�flecting: self).subjectType)

 return self

 }

 }

1

2

3

4

5

6

{ // some arbritrary code...

 return {

 View definition as usual

 }

}

1

2

3

4

5

let action:()->Void1

https://www.objc.io/books/thinking-in-swiftui/
https://www.objc.io/books/thinking-in-swiftui/

1. My text editor claims that this document is less than a 20-minute read, but it surely does not consider making sense of the computer code... ↩

2. I often wonder if some of these features were not introduced primarily for the sake of SwiftUI. ↩

3. In principle, updating scores could have been done with a SwiftUI simultaneous gesture, but in SwiftUI the gesture of the caller is executed before the one of the
callee, a dubious choice... This is not what is needed in my case because the selection must be considered for computing the totals before clearing them. I would
have needed to bubble in JavaScript parlance, this explains the callback trick. ↩

	Some SwiftUI fundamentals
	Main principle: linking states and views
	View
	Predefined views
	Custom views
	Show two dice

	Trailing closure
	Property wrapper
	Result builder
	Back to SwiftUI
	State management system
	Roll two dice
	Solitaire Yahtzee
	Description of the Yahtzee interface
	Organization of the application
	Accessing the global environment
	Changes for iOS 17

	Conclusion

	References
	Appendix: Useful tricks

